The Three Heads of the Well (Restifer, Aquifer and Foundation)

Dave Banks

Holymoor Consultancy Itd. Holymoor GeoEnvironmental Services Chesterfield, UK

HolyMoor

HolyMoor GeoEnvironmental Services Traini Aid Resear

The Three Heads of the Well

Once upon a time....

.....Jong ago....

....in a distant country....

....somewhere near Colchester....

If you're born rich and good-looking, success is assured.
 If not...you're doomed....

2. We must treat the three aspects of groundwater with

respect

The Three Heads in the Well

Hydrogeologists are used to dealing with the first aspect of groundwater:
1. as a high-quality water resource (an aquifer)
...and geotechnicians are familiar with the second
2. as an infrastructural substrate (a foundation)
...but we're beginning to realise that there is a third aspect to groundwater
3. as a thermal resource (an aestifer)

...as a reservoir of heating and cooling

HAMPSTEAD

with a finite thermal capacity

N-HAM

WILLESDEN

BARNES

Battersea

CAMBERWELL

We have been here before...

In the 1920s and 1930s

- groundwater was used for cooling and air conditioning in Brooklyn and Long Island...
- ...to the extent that its usage caused concern over water resources sustainability.
- Necessity for recharge of thermally spent water?
- Renewed concern over thermal sustainability and regional warming of the aquifers.

Kazmann, R.G. and Whitehead, W.R., 1980, The spacing of heat pump supply and discharge wells. *Ground Water Heat Pump Journal* **1(2)**: 28-31.

HolvMoor

Training
Aid
Research

Long history of (consumptive) shallow groundwater usage for air-conditioning and cooling (since 1860)

This led to massive ground subsidence of up to 100 mm/a, and totals of 2-3 m in places by the 1960s

Consequence: authorities severely restricted use of water from shallower aquifers and shifted abstraction to Aquifers 4 and 5

They also commenced injecting cold surplus winter surface water to the deep aquifer horizons:

- limited subsidence
- lowered temperature

Thus, in communist China in the 1960s/1970s

We can see the first example of the integrated management of:

- water resources
- Iand stability / subisdence
- heat resources

Luxiang S & Manfang B (1984). Case History No. 9.2; Shanghai, China, *In* Poland JF (ed) "Guidebook to studies of land subsidence due to ground-water withdrawal". UNESCO Studies and Reports in Hydrology 40, 155-160

Volker A & Henry JC (1988). Side effects of water resources management : overviews and case studies. A contribution to IHP Project 11.1.a, prepared by a working group for IHP-III. *IAHS Publication* **172**.

In London

Water resources are effectively managed and more-or-less stabilised

Subsidence is arguably less of an issue

but a 4 L/s open loop cooling well, pumping 1 mg/L suspended solids removes 126 kg sediment per year!

But elsewhere, geothermal drilling has caused serious stability issues

e.g. Staufen in Germany (transition of anhydrite to gypsum)

In London

Water resources are effectively managed and more-or-less stabilised

Subsidence is arguably less of an issue

but a 4 L/s open loop cooling well, pumping 1 mg/L suspended solids removes 126 kg sediment per year!

...and we have all the tools to be able to manage the thermal resource

As regards thermal management..We have modelling tools

SHEMAT, HST3D, FEFLOW

Sensitive to numerical dispersion issues

•Diagram from the SHEMAT modelling work of Fiona Todd (2008) in the Sherwood Sandstone of Selby

We have modelling tools...both 2D

•Example of FEFLOW modelling work performed by Carbon Zero Consulting and Holymoor Consultancy for the Environment Agency on generic welldoublet systems

....and 3D modelling tools

•Example of FEFLOW modelling work performed by Carbon Zero Consulting and Holymoor Consultancy for the Environment Agency on generic welldoublet systems

...and we have legislative tools

We can impose temperature constraints ΔT and flow constraints on discharge consents

Total heat discharge = flow x ΔT x 4190 J/L/°C

So, we could impose a net heat discharge limit on each open loop scheme of, say, several hundred MWh/annum in aquifers with a high net density of heat discharge

This would effectively encourage thermally balanced schemes

...and they all lived happily ever after !

THEEND